0
Research
Risk models to improve safety of dispensing high-alert medications in community pharmacies
Michael R. Cohen; Judy L. Smetzer; John E. Westphal; Sharon Conrow Comden; Donna M. Horn
J Am Pharm Assoc (2003) 2012;52:584-602. doi:10.1331/JAPhA.2012.10145

Abstract

Objectives  To determine whether sociotechnical probabilistic risk assessment can create accurate approximations of detailed risk models that describe error pathways, estimate the incidence of preventable adverse drug events (PADEs) with high-alert medications, rank the effectiveness of interventions, and provide a more informative picture of risk in the community pharmacy setting than is available currently.

Design  Developmental study.

Setting  22 community pharmacies representing three U.S. regions.

Participants  Model-building group: six pharmacists and three technicians. Model validation group: 11 pharmacists; staff at two pharmacies observed.

Intervention  A model-building team built 10 event trees that estimated the incidence of PADEs for four high-alert medications: warfarin, fentanyl transdermal systems, oral methotrexate, and insulin analogs.

Main outcome measures  Validation of event tree structure and incidence of defined PADEs with targeted medications.

Results  PADEs with the highest incidence included dispensing the wrong dose/strength of warfarin as a result of data entry error (1.83/1,000 prescriptions), dispensing warfarin to the wrong patient (1.22/1,000 prescriptions), and dispensing an inappropriate fentanyl system dose due to a prescribing error (7.30/10,000 prescriptions). PADEs with the lowest incidence included dispensing the wrong drug when filling a warfarin prescription (9.43/1 billion prescriptions). The largest quantifiable reductions in risk were provided by increasing patient counseling (27–68% reduction), conducting a second data entry verification process during product verification (50–87% reduction), computer alerts that can't be bypassed easily (up to 100% reduction), opening the bag at the point of sale (56% reduction), and use of barcoding technology (almost a 100,000% increase in risk if technology not used). Combining two or more interventions resulted in further overall reduction in risk.

Conclusion  The risk models define thousands of ways process failures and behavioral elements combine to lead to PADEs. This level of detail is unavailable from any other source.

Sign In
APhA Members 
Welcome to JAPhA.org! Please log in below using your APhA username and password. Update your APhA profile.
Not a Subscriber
New to JAPhA? Become an APhA member to receive a full subscription to both the print and online editions.

OR

Register for a FREE limited account to benefit from personalization features such as alerts.

References

Bates DW, Spell N, Cullen DJ, et al.  The cost of adverse drug events in hospitalized patients.  JAMA.  1997; 277: 307– 11.
 
Aspden P, Wolcott JA, Bootman JL, Cronenwett LR (Eds).  Preventing medication errors: quality chasm series.  Washington, DC:  National Academies Press;  2007.
 
Bates DW, Boyle DL, Vander Vliet MB, et al.  Relationship between medication errors and adverse drug events.  J Gen Intern Med.  1995; 10: 199– 205.
 
Bates DW, Cullen DJ, Laird N, et al.  Incidence of adverse drug events and potential adverse drug events: implications for prevention.  JAMA.  1995; 274: 29– 34.
 
Classen DC, Pestotnik SL, Evans RS, et al.  Adverse drug events in hospitalized patients: excess length of stay, extra costs, and attributable mortality.  JAMA.  1997; 277: 301– 6.
 
Porter J, Jick H.  Drug-related deaths among medical inpatients.  JAMA.  1977; 237: 879– 81.
 
Phillips J, Beam S, Brinker A, et al.  Retrospective analysis of mortalities associated with medication errors.  Am J Health Syst Pharm.  2001; 58: 1835– 41.
 
Lazarou J, Pomeranz BH, Corey PN.  Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies.  JAMA.  1998; 279: 1200– 5.
 
Howard R, Avery A, Bissell P.  Causes of preventable drug-related hospital admissions: a qualitative study.  Qual Saf Health Care.  2008; 17: 109– 16.
 
Howard RL, Avery AJ, Slavenburg S, et al.  Which drugs cause preventable admissions to hospital? A systematic review.  Br J Clin Pharmacol.  2007; 63: 136– 47.
 
Budnitz DS, Pollock DA, Weidenbach KN, et al.  National surveillance of emergency department visits for outpatient adverse drug events.  JAMA.  2006; 296: 1858– 66.
 
Ghandi TK, Weingart SN, Borus J, et al.  Adverse drug events in ambulatory care.  N Engl J Med.  2003; 348: 1556– 64.
 
Buchanan TL, Barker KN, Gibson JT, et al.  Illumination and errors in dispensing.  Am J Hosp Pharm.  1991; 48: 2137– 45.
 
Flynn EA, Barker KN, Berger BA, et al.  Dispensing errors and counseling quality in 100 pharmacies.  J Am Pharm Assoc.  2009; 49: 171– 80.
 
Allan EL, Barker KN, Malloy MJ, et al.  Dispensing errors and counseling in community practice.  Am Pharm.  1995; NS35: 25– 33.
 
Flynn EA, Barker KN, Carnahan BJ.  National observational study of prescription dispensing accuracy and safety in 50 pharmacies.  J Am Pharm Assoc.  2003; 43: 191– 200.
 
Szeinback S, Seoane-Vazquez E, Parekh A, et al.  Dispensing errors in community pharmacy: perceived influence of sociotechnical factors.  Int J Qual Health Care.  2007; 19: 203– 9.
 
Gurwitz JH, Field TS, Harrold LR, et al.  Incidence and preventability of adverse drug events among older persons in the ambulatory setting.  JAMA.  2003; 289: 1107– 16.
 
Lesar TS, Briceland L, Stein DS.  Factors related to errors in medication prescribing.  JAMA.  1997: 277: 312– 7.
 
Leape LL, Bates DW, Cullen DJ, et al.  Systems analysis of adverse drug events.  JAMA.  1995; 274: 35– 43.
 
Dean BS, Allan EL, Barber ND, et al.  Comparison of medication errors in an American and a British hospital.  Am J Health Syst Pharm. 1995; 52: 2543– 9.
 
Field TS, Gilman BH, Subramanian S, et al.  The costs associated with adverse drug events among older adults in the ambulatory setting.  Med Care.  2005; 43: 1171– 6.
 
Ernst FR, Grizzle AJ.  Drug-related morbidity and mortality: updating the cost-of-illness model.  J Am Pharm Assoc.  2001; 41: 192– 9.
 
Cohen MR, Proulx SM, Crawford SY.  Survey of hospital systems and common serious medication errors.  J Healthc Risk Manag.  1998; 18: 16– 27.
 
Davis NM, Cohen MR.  Today's poisons: how to keep them from killing your patients.  Nursing.  1989; 19: 49– 51.
 
Institute for Safe Medication Practices.  ISMP 2007 survey on high-alert medications; difference between nursing and pharmacy perspectives still prevalent.  ISMP Medication Safety Alert! 2007; 12( 10): 1– 3.
 
Smetzer JL, Cohen MR.  Medication error reporting systems. In: Cohen MR, Ed.  Medication errors. 2nd ed.  Washington, DC:  American Pharmacists Association;  2007: 513– 50.
 
Battles JB, Kanki BG.  The use of socio-technical probabilistic risk assessment at AHRQ and NASA. In: Spitzer C, Schmocker U, Dang VN, Eds.  Probabilistic safety assessment and management. 4th ed.  Berlin:  Springer;  2004: 2212– 7.
 
Burkhardt M, Lee C, Taylor L, et al.  Root cause analysis of medication errors. In: Cohen MR, Ed.  Medication errors. 2nd ed.  Washington, DC:  American Pharmacists Association;  2007: 513– 50.
 
Comden SC, Marx D, Murphy-Carley M, Hale M.  Using probabilistic risk assessment to model medication system failures in long-term care facilities. Accessed at www.ahrq.gov/downloads/pub/advances/vol2/Comden.pdf,  August 15, 2010.
 
Senders JW, Senders SJ, Smetzer JL, et al.  Heath care failure mode and effects analysis. In: Cohen MR, Ed.  Medication errors. 2nd ed.  Washington, DC:  American Pharmacists Association;  2007: 561– 86.
 
The Joint Commission.  Failure mode and effects analysis in health care: proactive risk reduction. 2nd ed.  Oakbrook Terrace, IL:  Joint Commission Resources;  2005.
 
Helmreich RL.  On error management: lessons from aviation.  BMJ.  2000; 320: 781– 5.
 
der Schaaf TW Van.  Medical applications of industrial safety science.  Qual Saf Health Care.  2002; 11: 205– 6.
 
Spencer FC.  Human error in hospitals and industrial accidents: current concepts.  J Am Coll Surg.  2000; 191: 410– 8.
 
Marx DA, Slonim AD.  Assessing patient safety risk before the injury occurs: an introduction to socio-technical probabilistic risk assessment in healthcare.  Qual Saf Health Care.  2003; 12( suppl 2): 33– 8.
 
Marx DA, Westphal JE.  Socio-technical probabilistic risk assessment: its application to aviation maintenance.  Int J Aviat Psychol.  2008; 18: 51– 60.
 
Stamatelatos M, Apostolakis G, Dezfuli H, et al.  Probabilistic risk assessment procedures guide for NASA managers and practitioners. Accessed at www.hq.nasa.gov/office/codeq/doctree/praguide.pdf,  June 3, 2010.
 
Garrick BJ, Christie RF.  Probabilistic risk assessment practices in the USA for nuclear power plants.  Saf Sci.  2002; 40: 177– 201.
 
Forester JA, Whitehead DW, Kolaczkowski AM, et al.  Results of a nuclear power plant application of a new technique for human error analysis (ATHEANA). Accessed at www.osti.gov/bridge/servlets/purl/543650-eNlI7i/webviewable/543650.pdf,  June 3, 2010.
 
Reason J.  Hazards, defences and losses. In: Reason J.  Managing the risks of organizational accidents.  Burlington, VT:  Ashgate;  2000: 1– 18.
 
Stockwell DC, Slonim AD.  Quality and safety in the intensive care unit.  J Intensive Care Med.  2006; 21: 199– 10.
 
Wreathall J, Nemeth C.  Assessing risk: the role of probabilistic risk assessment (PRA) in patient safety improvement.  Qual Saf Health Care.  2004; 13: 206– 12.
 
Cook RI, Wreathall J, Smith A, et al.  Probabilistic risk assessment of accidental ABO-incompatible thoracic organ transplantation before and after 2003.  Transplantation.  2007; 84: 1602– 9.
 
Institute for Safe Medication Practices.  The National Medication Errors Reporting Program (ISMP MERP). Accessed at https://www.ismp.org/orderforms/reporterrortoismp.asp.asp,  July 1, 2012.
 
Pennsylvania Patient Safety Authority.  Pennsylvania Patient Safety Reporting System. Accessed at http://patientsafetyauthority.org/PA-PSRS/Pages/PAPSRS.aspx,  August 15, 2010.
 
Food and Drug Administration.  FDA MedWatch: the FDA safety information and adverse event reporting program. Accessed at www.fda.gov/medwatch,  February 7, 2010.
 
Institute for Safe Medication Practices.  ISMP survey on high-alert medications in community/ambulatory settings. Accessed at www.ismp.org/survey/newsletter/comsurvey200606.asp,  June 10, 2010.
 
Rothschild JM, Federico FA, Ghandhi TK, et al.  Analysis of medication-related malpractice claims: causes, preventability, and costs.  Arch Intern Med.  2002; 162: 2414– 20.
 
Moore TJ, Cohen MR, Furberg CD.  Serious adverse drug events reported to the Food and Drug Administration, 1998–2005.  Arch Intern Med.  2007; 167: 1752– 9.
 
Zimmerman R, Bier VM.  Risk assessment for extreme events. Accessed at www.ldeo.columbia.edu/chrr/documents/meetings/roundtable/white_papers/zimmerman_wp.pdf,  June 10, 2010.
 
Apostolakis G.  The concept of probability in safety assessments of technological systems.  Science.  1990; 250: 1359– 64.
 
Bier VM.  Challenges to the acceptance of probabilistic risk analysis.  Risk Analysis.  1999; 19: 703– 9.
 
Shelton CP.  Human interface/human error. Accessed at www.ece.cmu.edu/~koopman/des_s99/human,  February 10, 2010.
 
Relex software [computer program].  Version 7.6.  Greensburg, PA:  Relex Software Corporation;  2003.
 
Institute for Safe Medication Practices.  Look-alike names: safety briefs.  ISMP Medication Safety Alert! 2008; 13( 6): 1– 2.
 
Koutnik E.  Bar coding: working toward error-free pharmacy. Accessed at www.pharmacytimes.com/issues/articles/2003--09_690.asp,  January 10, 2010.
 
Institute for Safe Medication Practices.  ISMP's list of error-prone abbreviations, symbols, and dose designations. Accessed at www.pharmacytimes.com/issues/articles/2003--09_690.asp,  January 22, 2010.
 
Poon EG, Cina JL, Churchill W, et al.  Medication dispensing errors and potential adverse drug events before and after implementing bar code technology in the pharmacy.  Ann Intern Med.  2006; 145: 426– 34.
 
Ukens C.  New study sheds light on medication errors.  Drug Topics.  2002; 146( 21): 33.
 
Maviglia SM, Yoo JY, Franz C, et al.  Cost-benefit analysis of a hospital pharmacy barcode solution.  Arch Intern Med.  2007; 167: 788– 94.
 
Lexi-Comp.  FentaNYL monograph (Lexi-Drugs). Accessed at http://online.lexi.com/lco/action/doc/retrieve/docid/patch_f/6903,  August 16, 2010.
 
Institute for Safe Medication Practices.  Methotrexate overdose due to inadvertent administration daily instead of weekly. Accessed at www.ismp.org/hazardalerts/ha.pdf,  August 16, 2010.
 
Moore TJ, Walsh CS, Cohen MR.  Reported medication errors associated with methotrexate.  Am J Health Syst Pharm.  2004; 61: 1380– 4.
 
Schulmeister L.  Chemotherapy medication errors: descriptions, severity, and contributing factors.  Oncol Nurs Forum.  1999; 26: 1022– 42.
 
Chassin MR, Becher EC.  The wrong patient.  Ann Intern Med.  2002; 136: 826– 33.
 
Institute for Safe Medication Practices.  Oops, sorry, wrong patient! Applying the JCAHO “two-identifier” rule beyond the patient's room.  ISMP Medication Safety Alert! 2004; 9( 11): 1– 2.
 
Institute for Safe Medication Practices.  “20/20” captures community pharmacy errors, but vision seems to be shortsighted.  ISMP Medication Safety Alert! 2007; 12( 7): 1, 3.
 
Knudsen P, Herborg H, Mortensen AR, et al.  Preventing medication errors in community pharmacy: frequency and seriousness of medication errors.  Qual Saf Health Care.  2007; 16: 291– 6.
 
Bobb A, Gleason K, Husch M, et al.  The epidemiology of prescribing errors.  Arch Intern Med.  2004; 64: 785– 92.
 
Bernardo JM.  Bayesian statistics. Accessed at www.uv.es/bernardo/BayesStat.pdf,  August 9, 2009.
 
Top 200 generic drugs by units in 2007. Accessed at http://drugtopics.modernmedicine.com/drugtopics/data/articlestandard//drugtopics/072008/491181/article.pdf,  August 9, 2009.
 
IMS Health.  2009 channel distribution by U.S. dispensed prescriptions. Accessed at www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Channel%20Distribution%20by%20U.S.%20RXs.pdf,  August 15, 2010.
 
Wu JS, Apostolakis GE.  Experience with probabilistic risk assessment in the nuclear power industry.  J Hazard Mater.  1992; 29: 313– 45.
 
Forester JA, Whitehead DW, Kolaczkowski AM, et al.  Results of nuclear power plant application of a new technique for human error analysis.  Risk Analysis.  1996; 16.
 
Hsueh KS, Mosleh A.  The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants.  Reliab Eng Syst Saf.  1996; 52: 297– 314.
 
Sues RH, Chen HC, Oswald EA, et al.  Integrating internal events in an external probabilistic risk assessment: Tornado PRA case study.  Reliab Eng Syst Saf.  1993; 40: 173– 86.
 
 System design and analysis harmonization and technology update.  Fed Regist.  1996; 61: 26246– 7.
 
Moore TJ, Cohen MR, Furberg CD.  Quarter watch: 2008 quarter 1. Accessed at www.ismp.org/QuarterWatch/2008Q1.pdf,  February 10, 2010.
 
Moore TJ, Cohen MR, Furberg CD.  QuarterWatch: 2008 quarter 2. Accessed at www.ismp.org/QuarterWatch/200901.pdf,  August 10, 2010.
 
Vertical Health LLC.  Type 1 diabetes: symptoms, diagnosis, & treatment of type 1 diabetes. Accessed at www.endocrineweb.com/diabetes/1diabetes.html,  February 18, 2010.
 
Centers for Disease Control and Prevention.  Diabetes public health resource. Accessed at www.cdc.gov/diabetes/projects/cda2.htm,  February 18, 2010.
 
Institute for Safe Medication Practices.  Proliferation of insulin combination products increases opportunity for errors. ISMP Medication Safety Alert! 2002; 7( 24): 1– 2.
 
Institute for Safe Medication Practices.  Getting the right insulin is becoming a real crapshoot.  ISMP Medication Safety Alert! 2004; 9( 14): 2– 3.
 
Gertman D, Blackman H, Marble J, et al.  The SPAR-H human reliability analysis method.  Washington, DC:  Nuclear Regulatory Commission;  2005.
 
System Reliability Center.  Technique for human error rate prediction (THERP).  Rome, NY:  Alion Science and Technology;  2005.
 
Garnerin P, Pellet-Meier B, Chopard P, et al.  Measuring human-error probabilities in drug preparation: a pilot simulation study.  Eur J Clin Pharmacol. 2007; 63: 769– 76.
 
Lewis M.  THERP: technique for human reliability analysis. Accessed at www.pitt.edu/~cmlewis/THERP.htm,  June 15, 2010.
 
Institute of Petroleum.  Human reliability analysis.  London:  Institute of Petroleum;  2003.
 
Gibson WH, Hicking B, Kirwan B.  Feasibility study into the collection of human error probability data.  Brussels, Belgium:  European Organisation for the Safety of Air Navigation, Eurocontrol Experimental Centre;  2006.
 
NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).
Please read the other comments before you post yours. Comments are moderated and will appear on the site at the discertion of the editorial staff.
* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Related Content

Customize your page view by dragging & repositioning the boxes below.

JAPhA Articles
Advertisement
 
  • Print
  • PDF Download
  • Email
  • Share
  • Get Citation
  • Submit Comment
  • Article Alerts
    Please Wait... Processing your request... Please Wait.
    You must sign in to sign-up for alerts.

    Please confirm that your email address is correct, so you can successfully receive this alert.

  • Letters To Editor
  • Reprints